
Friday Live
Privacy-preserving Crypto I



A small group of CS-523 students decided to elect their student representative. They heard about e-voting

and decided to implement e-voting scheme using an SMC protocol.

There are m participants, and n election candidates. Each vote is an n-dimensional one-hot encoded

vector with 1 in the position for the selected candidate. The voting outcome is the sum of the vectors.

Example: Suppose there are 4 candidates, so n = 4. Then (0, 0, 1, 0) is a vote for the 3rd candidate. The 

vector (0, 2, 7, 1) could be a result of the election. 

MPC-based election



It is a warm-up question, just list all the reasons why not.

1) Privacy

• No party should learn anything more than its prescribed output

For example the second one will know the vote of the first one. (True for both honest-
but-curious and malicious threat models)

2) Correctness
• Each party is guaranteed that the output that it receives is correct

Not satisfied for malicious threat model.

The followings are not in this year's lecture, but in case students ask for them, we

leave the notes here:
3) Independence of Inputs

• Corrupted parties must choose their inputs independently of the honest parties’ 

inputs
Not satisfied, clients know the voting results of all the participants so far.

4) Guaranteed Output Delivery
• Corrupted parties should not be able to prevent honest parties from receiving their

output

5) Fairness
• Corrupted parties should receive their outputs if and only if the honest parties also

receive their
outputs

The first scheme which they have seen in the lecture slides was Garbled Circuits. Students read that it

works well for 2-party computations and decided to extend it to multi-party through “pairwise voting”:

1) They form a round table

2) Starting clockwise one student is a server and the next one is a client

3) One by one they compute the following function: f(s, vn). Where s is a “current” voting result and vn is

a vote

4) s is initialized as v1

At the end of the procedure the last person will know the result of the voting, and he transfers it to other

participants.

Is this mechanism SMC? Justify in terms of privacy and correctness for different threat models.

MPC-based election



Each of them computes s = f(v1, …. , vn) = v1 + ... + vn

No, two examples: 
- A candidate gets zero votes => learn that nobody voted for this

candidate
- A candidate that P_i voted for got k votes => learn that k-1 

other people voted for this candidate (in the extreme case of 
two parties, learn other party's vote) 

After some discussions they decided to stop inventing a “custom SMC”, and use deployment-ready SMC 

algorithm in a black-box way (e.g., as SMC based on additive-secret sharing). 

● What could be the f(.)?

● Does this scheme guarantee that each participant has zero information about other votes? 

MPC-based election



1) Return only number of the candidate who won the election.

2) No, it is not possible, since the functionality (finding out the candidate with the 
most votes) inherently leaks something about the inputs. 

1) What can be done to reduce this privacy leakage?

2) Is it possible to completely eliminate it?

Privacy leakage of MPC-based election


	Slide 1: Friday Live
	Slide 2
	Slide 3
	Slide 4
	Slide 5

